
 1

Abstract- Wheelchairs will be in ever greater demand in a 
rapidly aging society. Because of the special needs of aging 
users, due to frailty and reduced reflexes in many cases, it is 
important to give careful consideration to rather fundamental 
design properties. Inter alia it is very important to define, 
clarify and design running, turning and stability properties of 
the highest standards in manual wheelchairs. In particular we 
discuss these matters in regard to wheelchair behavior on 
sloping surfaces. In the present paper we report on an 
analytical model for a 4 wheel manual wheelchair which 
shows good correlation with the existing experimental data 
relating to torque and speed when the wheelchair is moving 
on a level plane and when climbing a 3 degree slope. The 
rolling stability of the wheel chair on a slope is also 
discussed. 
Keywords - Wheelchair, Dynamic characteristics , Stability 
                                                   

I. INTRODUCTION 
                          

   In a rapidly aging society, wheelchairs are used a lot as 
support devices for independent movement. The environment 
where they are used is not necessarily free of barriers. Many 
roads have a slope in Japan. Some roads  are a plane but 
others are designed also to rise from the curb towards the 
center. This design feature is for improved drainage. Such 
roads have to be crossed and also have to be used up and 
down their length for any journey.  Accordingly it is 
important to clarify the dynamic characteristics and stability 
properties of manual wheelchairs from the point of users and 
providers. Yoneda etc. [1] and Tanaka etc. [2] have 
undertaken a lot of empirical research in this area. 
   In the present study, the dynamic characteristics of 
manual wheelchairs were studied from a theoretical point of 
view based on Shung etc. [3], for powered wheelchairs. The 
models fitted the existing experimental results for 4 
wheelchairs on a level plane and on a downhill slope.   
Cooper’s work [4]-[6] on the stability of wheelchairs on a 
downhill slope was also considered.   
   The authors considered the stability conditions for a  
violent fall and the direction hold stability of the wheelchair 
on a downhill slope.  
  On the stability conditions for a violent fall , the influence 
of the center of gravity of the rider/wheelchair system is 
greater before than an axle line is considered and the stable 
judgement equation is proposed.  
   Furthermore, we studied the direction hold stability on a 
downhill slope in relation to torque, pitch and drive distance 
in a search for the relationship between necessary torque and 
slope angle, to travel in a straight line, because it is difficult 
to travel in a straight line where there is a slope affecting     
pitch.  
                                                 

               II. METHODOLOGY                         
                                                        

   Although the modeling of the wheelchair on a down hill 
slope is based on a powered wheelchair of Shung [3], the 
following points are changed and simplified to clarify the 
principles.  
(a) A surface of a slope is assumed to be plat.  
(b) The coordinate system of the wheelchair on a slope 

depends on at least the properties shown in Figure 1.   
(c) The moving direction is defined as a positive irrespective 
   of an ascent or a descent. 
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Fig. 1 Coordinate system for wheelchair characteristic and  
     stability analysis 
                                                   
where x, y, z : the coordinate system fixed on the earth, x’, y’, 
z’ ; the coordinate system fixed on the wheelchair rotated θ in 
the y axis along a slope turning a wheelchair toward the 
inclination of a slope, x”, y”, z”; the coordinate system fixed 
on the wheelchair rotated α in the z’ axis z from the 
inclination direction of a slope. θ0 shows the gradient of a 
slope, α a conversion start angle, θ  wheelchair moving 
direction of a slope.    
                                                   
II-1. Model while travelling                                   
   The ball bearing resistance and rolling resistance acting 
on a wheelchair always work in opposite directions. If those 
resistance exceed the driving force, a wheelchair will stop.   
   The resistance force changes the direction as the driving 
mode of a wheelchair changes from positive rotation, 
stationary state and reversal in this way. In turn the governing 
equation will also changes. 
   In the present study the driving mode of positive rotation 
is studied, that is 
                                                     
    vR > 0,    vL  > 0                        (1) 
                                                    
where vL, vR are the velocity of the right and left wheel(m/s). 
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   The wheel bearing and rolling resistance are able to be 
considered as a main torque loss resource [8]. The following 
equations are obtained from the figure of the free body of a  
left side wheel on the slope as shown in Fig. 2.  

     Fig.2 Left wheel free body on a slope 
                                                  
 Rotary motion of the right and left circle   

WRWR

•

=−− ωWJrFTT ３ｒ ,  WL1

•

=−− ωWlWL JrFTT    (2) 
where 
TwL, TwR: the torque transferred to the left, right wheel from 
the arm (N m)     
Tl, Tr: the torque loss by friction(Nm)   
Fl, F3: the force acting on the direction on the rear wheel(N)     
ωwL, ωwR: the angular velocity of the left, the right wheel  
(rad/s)  
Jw: the polar moment of inertia of the rear wheel of the 
wheelchair (kg m2)    
Also,    

frFT WLcl 5
3
2

)( += ωβ ,   frFT WRcr 6
3
2

)( += ωβ       (3) 
βC : the bearing constant (mNs2/3) 
f : the rolling friction coefficient  
F5, F6: the force of vertical z' direction acting on a rear wheel 
on the slope(N) 

                             
        Fig. 3 Wheelchair on a down hill slope    
   
   Because torque loss is positive in the right and left wheel, 
the angular velocity of the wheels are    

         
r
vL

WL =ω ,  
r

vR
WR =ω                  (4) 

where the acceleration of the wheelchair of x”, y” direction 
are , making D half the track width of the wheelchair and l 
the distance from a rear axle to the center of gravity 
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Acceleration of the wheelchair of the right and left are   
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Putting M as the total mass of the wheelchair and rider 
system, the components of gross weight are 
  θα sincosMgFx = , θα sinsinMgFy = , 
  θcosMgFz =                            (7)  
From the relation of the balance of power    
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Putting  WB as the distance between a front and rear wheel 
and L as the center of gravity height, the equations of the 
moment balance from Fig. 3 are 
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F2, F4:  force acts on the y” direction of a rear wheel  
F7, F8: force acts on the vertical z” direction of a front wheel 
on the slope  
Solving these equations simultaneously, we obtain   
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However, here we are strictly concerned only with the case of 
a wheelchair that turns with keeping forward velocity.  It is 
considered to be unstable if a wheelchair goes into reverse or  
stops contrary to the driver’s intention. 
   
 II-2. Downhill slope stability  
There is a potential or the wheelchair to fall over due to the 
centrifugal force at the turn. There is also the direction hold 
stability defined by whether or not direction can be held, 
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towards a specific goal, by intentionally by overcoming the 
influence of a slope. 
  
II-2-1. Stability for falling over   
   The factors that relate to wheelchair falling over are the 
component Fy of  weight Mg and the component Cy of 
centrifugal force on the y” direction. The direction of Fy is 
assumed to occur on the side of inclination direction. In the 
present study we consider the case that it always turns to the 
left. 
   Whether a wheelchair is stable or not is determined by 
whether or not the moment of force component Fz of weight 
on the z’ direction is bigger or smaller than the moments of 
force of the two factors.  
   The stability condition, i.e., the condition does not fall 
down is 
     FzD ≥ CyL+ FyL                   (11) 
where 
   

0sinsin θαMgFy = , 
0cosθMgFz =  

  ( )22

4 LRy vv
D

MC −=                   (12) 

Although Fz is constant irrespective of the attitude of a 
wheelchair, Fy changes. However, it is good enough to 
determine whether a wheelchair fall over or not.  
  
The x” velocity component of a wheelchair is 

       )(
2
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The turn angular velocity of a wheelchair  
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and substituting the above relation to the equations (11)   
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but l shows the distance from an axle center to the center of 
gravity.   
In the case that turn radius (ρ) is large, putting here  
(l/ρ)2<<1 
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II-2-2. Direction hold stability    
   The ability to use a wheelchair varies widely, depending 
on sex, age, the degree of disability of arm, etc.  
It may not be possible to go forward to the direction of a goal 
due to the inclination of a slope. 

It should be 
•

α ( = ωz )  = 0 to stay on course. 

As turn angular velocity 
•

α  is expressed with
•

α=(vR-vL)/2D, 
substituting equations (6), B = 0 must be satisfied to hold a 
steady course. 
If the necessary torque required to go straight (ωWR = ωWL) on 
a down hill slope is applied to only the right side wheel 
 (TWL= 0), from the equation (10)2.   

the right side torque is expressed as follows: 
     

yWR FlfL
D
rT )( +=               (17) 

Substituting equation (7)2 into equation (17) and if it is shown 
with non-dimensional form 
    αθ sinT

Mgr
TWR =                  (18) 

where  θθ sin)(1 lfL
D

T +=  

  
The x’, y’ components of non-dimensional torque to go 
straight toward the α direction are 
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Eliminating α from both equations,    
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the locus of necessary non-dimensional torque to go straight 
on the plane x’y’ is obtained. 
  
     III. CALCULATIONS AND DISCUSSION 
  
   As an example of a simulation, we calculated the locus 
and stability to turn 90 degrees, 180 degrees and 360 degrees, 
putting a torque to the right hand rim only on the plane and 
on the slope in the case of running on the equal torque.  
   The wheelchair dimensions are WB=0.3238 m,. 
l=0.04857m, L=0.505m, D=0.235m, r=0.3025m. The 
following values are from [3], IZ = 7.5kgm2, JW=0.017kgm2, 
βC=0.14mNs 2/3, f=0.02, M=100 kg, Tp the drive pitch: 50 
times/min(=1.2 sec), S0 drive period length: 0.47 m, Tw: drive 
torque: 9.8Nm as standard value and it is changed due to 
inclination angle of slope θ, conversion start angle α of 
wheelchair speed.  

    Fig.4 Comparison between the present simulation 
         and existing experimental results  
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   For confirmation of the present simulation, using the 
measured torque, we have obtained the relationship between 
the velocity versus the time and the distance. This simulation 
(Simulation (1) in Fig. 4) shows good agreement with the 
experimental results[1]. Even assuming the torque has a 
sinusoidal shape, we obtain a relatively good correlation as 
shown in Fig. 4 (see Simulation (2)). Then using this assumed 
sinusoidal shape of torque, we obtained the relationship 
between the maximum torque and the speed and compared 
this with existing experimental data [2] in Fig. 5. Good 
correlation between both of them were again found.  

 Fig.5 Comparison between the present simulation 
     and experimental results on torque vs. speed 

       Fig.6 Torque and speed of wheelchair 
  
   Figure 6 represents a velocity change with time under a 
constant amplitude of driving torque, starting with the initial 
velocity 2.0 m/sec, the maximum torque 9.8Nm in one side, 
the pitch 50 times/min. and the distance 0.47m. Referring to 
Hildebrandt et al. [7], and making comparisons with the 
experimental work of Tanaka [2] the difference on the 
amount of power required was 1 %. 
   Figure 7 represents equation (20) with a angle θ of slope 
as a parameter in the case of running on a slope. The figure 
shows the necessary uniform torque to go straight on the 
slope with an optional slope angle (θ) from the inclination 
direction to the optional angle (α).  

 
 

 
  
  
  
  
   
  
  
  
  
  
  
  
  
  
  
  
  
  
Fig. 7. Necessary non-dimensional torque (TWR/Mgr) for a  
      straight running on a θ slope with α direction 
  

IV. CONCLUSION    
                                 

   The simulation of dynamic characteristics of manual 
wheelchairs was studied and it gave a good correlation with 
existing experimental results. Stability of the wheelchair on a 
down hill slope was also discussed from the position (1) the 
stability against falling over due to the centrifugal force at the 
turn and also (2) the direction hold stability. A stability chart 
for a wheelchair on a down hill slope has been proposed. 
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